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Two-dimensional Stokes flow due to a source and a sink of equal strength below the free surface is
analyzed and free surface shape and cusp formation are discussed. The source-sink pair below the free
surface are aligned vertical to the free surface. In the analysis, the Stokes’ approximation is used and
surface tension effects are included, but gravity is neglected. The solution is obtained by using conformal
mapping and complex function theory. From the solution, typical free surface shapes are shown and
formation of a cusp on the free surface is discussed. As the capillary number increases, the converging
free surface shape becomes singular and tends to form a cusp for sufficiently large capillary number.
Typically, streamline patterns for some capillary numbers are also shown. As the capillary number
vanishes, the solution is reduced to the linearized potential flow solution.

© 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Since some flow visualizations by photographs of the cusp on
the free-surface of both Newtonian and non-Newtonian fluids at
low Reynolds numbers have been performed by Joseph [1], many
theoretical and experimental researches are carried out [2,3]. These
photographs show compelling evidence for the formation of two-
dimensional sharp cusps on the free surface in the regions of
converging flow. The dynamical mechanism related to this cusp
singularity on the free surface in a Stokes flow has recently become
an attractive subject of theoretical and experimental researches.
The understanding of cusp formation is very important, since the
presence of two-dimensional cusp on the free surface may result
in a mechanism for air entrainment such as in chemical reaction or
film coating. In the paper of Jeong and Moffatt [3], they carried out
experiments using a pair of counter-rotating cylinders in a Newto-
nian fluid with free surface. For very slow rotation rates, there is
a stagnation line on the free surface, and in some circumstances a
small rounded crest can form in the neighborhood of this stagna-
tion line. When the rotation rate is increased however, the surface
dips downward, and simple visual observation indicates the pres-
ence of a very sharp cusp on the free surface. A complete analytical
solution of a model problem of this experiments was also ob-
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tained, where the full nature of the flow and the detail of the cusp
formation procedure were explained. In the model problem, they
considered a Stokes flow induced by a vortex dipole below the
otherwise undisturbed free surface, where direction of the vortex
dipole was perpendicular to the free surface. Jeong [4] generalized
this model problem to the case in which the orientation of the
vortex dipole beneath the free surface is arbitrary. Antanovskii [5]
generalized to the case in which the interfacial tension is variable,
and Cummings [6] to the steady bubble solutions in dipole-driven
Stokes flow. Jeong [7] also considered a Stokes flow induced by a
single source or sink of arbitrary strength instead of a vortex dipole
below the otherwise undisturbed free surface.

In this paper, we consider a Stokes flow due to a source and a
sink of equal strength located below the free surface. The source-
sink pair is aligned vertical to the free surface and the distance
between the source and the sink is arbitrary. This flow is a gen-
eralized flow of Jeong and Moffatt [3] and Jeong [7], since these
problems may be considered as the limit cases where the distance
between the source and the sink approaches to zero and infinity,
respectively. As a low Reynolds number limit, the Stokes’ approx-
imation is used and the effect of surface tension is included, but
gravity effects are neglected. The solution is obtained analytically
by using conformal mapping and complex function theory. From
the solution, the deformation of the free surface and the formation
of a cusp on the free surface are discussed and some streamline
patterns are shown.
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Fig. 1. Free surface deformation by a source-sink pair and conformal mapping from the flow field in z-plane into the inside of unit circle in ζ -plane.
2. The method of solution

2.1. Mathematical formulation

Consider the flow region shown in Fig. 1(a), where the undis-
turbed fluid occupies the half space y < 0. A line source of
strength k (outward flowrate 2πk) is located at z(= x + iy) = −id
and of strength −k at z = −id(1 + h). Source of negative strength
may be considered as sink. To non-dimensionalize the length scale
by d, we may take d = 1 in what follows and the source and the
sink singularities are then located at z = −i and z = −i(1 + h), re-
spectively. The flow is generated by this source-sink pair and the
free surface Γ is distorted, while the free surface at far field should
remain flat and the height of the free surface vanishes as |x| → ∞.

Assume that the Reynolds number Re ≡ k/ν (ν: kinematic vis-
cosity) is small so that the stream function Ψ satisfies the bi-
harmonic equation ∇4Ψ = 0. It is well known that the stream
function Ψ can then be expressed in the form [8]

Ψ = Im
[

f (z) + z̄g(z)
]
, (1)

where two complex functions f (z), g(z) are analytic at all points
z in the fluid domain except at the source and sink singularities
z = −i and z = −i(1 + h), i.e.,

f (z) → k ln(z + i) as z → −i, (2)

f (z) → −k ln
{

z + i(1 + h)
}

as z → −i(1 + h). (3)

The velocity components (u, v) are then given by

u − iv = f ′(z) + z̄g′(z) − g(z), (4)

and the pressure (p) and vorticity (Ω) fields are given by

p − iμΩ = 4μg′(z) (5)

where μ is the viscosity. It is easy to verify that, with these rela-
tions, the Stokes equation ∇p = μ∇2u is satisfied in the fluid.

As shown by Richardson [9], velocity and stress boundary con-
ditions on the free surface Γ take the form

f ′(z) + z̄g′(z) − g(z) = u0(z)

(
dz

ds

)
, (6)

f ′(z) + z̄g′(z) + g(z) = −i
γ

2μ

(
dz

ds

)
, (7)

where s is the arclength on Γ measured from the point of sym-
metry B (Fig. 1(a)), γ the surface tension coefficient, and u0(z) the
(real) tangential velocity on the free surface. The manipulation of
(6) and (7) yields the following equations (for z ∈ Γ );

f (z) + z̄g(z) = 0, (8)

Im

[(
dz

ds

)
g(z)

]
= γ

4μ
. (9)
The conditions u, v → 0 at infinity (|z| → ∞) are satisfied pro-
vided

f (z) → cz, g(z) → c, as |z| → ∞, (10)

where c is an arbitrary constant. We can find from (6) and (7) that
the choice c = −iγ /4μ is appropriate. Eqs. (2), (3) and (6)–(10)
constitute the essential boundary conditions that f (z) and g(z)
must satisfy. The symmetry conditions Ψ = 0, Ω = 0 on x = 0
clearly imply that

Im
{

f (iy)
} = 0, Re

{
g(iy)

} = 0. (11)

Since this problem may be considered as a generalization of previ-
ous problems, [3,7] we follow the similar procedure as in Refs. [3]
and [7].

2.2. Conformal mapping and solution procedure

Let z = w1(ζ ), yet unknown, be the conformal mapping that
maps the fluid domain D onto the unit disk D ′: |ζ | � 1. The
points A, B, C, D, E of Fig. 1(a) map to the points A′, B ′, C ′, D ′, E ′
of Fig. 1(b), respectively. Since the mapping places the (imaged)
source and sink at ζ = 0, −iλ (0 < λ < 1), respectively, the map-
ping function w1(ζ ) must satisfy,

w1(0) = −i, (12)

w1(−iλ) = −i(1 + h). (13)

If we set,

F (ζ ) ≡ f
{

w1(ζ )
} = f (z), (14)

G(ζ ) ≡ g
{

w1(ζ )
} = g(z), (15)

U (ζ ) ≡ u0
{

w1(ζ )
} = u0(z), (16)

then,

f ′(z) = F ′(ζ )

w ′
1(ζ )

, g′(z) = G ′(ζ )

w ′
1(ζ )

. (17)

By the conformal mapping properties, it follows that, for z ∈ Γ , i.e.,
|ζ | = 1,

dz

ds
= −iζ

w ′
1(ζ )

|w ′
1(ζ )| , (18)

(
dz

ds

)
= i

ζ

w ′
1(ζ )

|w ′
1(ζ )| . (19)

Hence, boundary conditions (6) and (7) become, on |ζ | = 1,

F ′(ζ )

w ′ (ζ )
+ w1(ζ )

G ′(ζ )

w ′ (ζ )
− G(ζ ) = U (ζ )

i

ζ

w ′
1(ζ )

|w ′ (ζ )| , (20)

1 1 1
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and

F ′(ζ )

w ′
1(ζ )

+ w1(ζ )
G ′(ζ )

w ′
1(ζ )

+ G(ζ ) = γ

2μζ

w ′
1(ζ )

|w ′
1(ζ )| . (21)

Subtracting (20) from (21) and taking the complex conjugate gives

G(ζ )

ζ w ′
1(ζ )

= 1

2|w ′
1(ζ )|

(
γ

2μ
+ iU (ζ )

)
, on |ζ | = 1. (22)

Since w1(ζ ) is a conformal mapping function, w ′
1(ζ ) is analytic

and non-zero in |ζ | < 1, and the left-hand side of (22) is analytic
in |ζ | < 1 except a simple pole at ζ = 0. To remove this singularity,
we subtract G(0)/ζ w ′

1(0) from each side of (22):

G(ζ )

ζ w ′
1(ζ )

− G(0)

ζ w ′
1(0)

= 1

2|w ′
1(ζ )|

(
γ

2μ
+ iU (ζ )

)

− G(0)

ζ w ′
1(0)

on |ζ | = 1. (23)

Now, the left-hand side of (23) is the boundary value of a function
analytic in |ζ | < 1. If w1(ζ ) and G(0) can be found, then the real
part of the right-hand side of (23) will be known, so that G(ζ )

may be found by using Cauchy’s integral theorem [8]. Hence, the
formal expression of G(ζ ) is, for |ζ | � 1,

G(ζ )

ζ w ′
1(ζ )

= G(0)

w ′
1(0)

(
ζ + 1

ζ

)

+ 1

2π i

∮
|ζ0|=1

γ

4μ|w ′
1(ζ0)|

ζ0 + ζ

ζ0(ζ0 − ζ )
dζ0, (24)

where w ′
1(ζ ) and G(0) should be determined. To consider the be-

havior of this expression as |ζ | → 1, we put ζ0 = eiθ0 and ζ = eiθ

in (24), then

G(ζ )

ζ w ′
1(ζ )

= 2 cos θ
G(0)

w ′
1(0)

+ γ

4μ|w ′
1(ζ )|

+ iγ

8πμ

2π∫
0

1

|w ′
1(eiθ0)|

cos θ + cos θ0

sin θ − sin θ0
dθ0, (25)

where the principal value is used for integral. Since G(0) is pure
imaginary from the symmetry condition (11) and w ′

1(0) must be
real (see Fig. 1), it can be shown that the real part of this expres-
sion is γ /4μ|w ′

1(ζ )| as required by (22).
Now, consider that the boundary conditions (2), (3) are trans-

formed in the ζ -plane as

F (ζ ) → k ln ζ, as ζ → 0, (26)

F (ζ ) → −k ln(ζ + iλ), as ζ → −iλ, (27)

respectively, where λ (0 < λ < 1) is a real constant defined in (13).
Moreover, the boundary condition (8) is transformed in ζ -plane as

F (ζ ) = −w1(ζ )G(ζ )

= −w∗
1(ζ )G(ζ ) on |ζ | = 1, (28)

since ζ̄ = 1/ζ on |ζ | = 1. The conjugate function w∗
1 in (28) is

defined as w∗
1(ζ ) = w1(1/ζ̄ ). Note that the boundary conditions

(26), (27) have logarithmic singularities at ζ = 0, −iλ, which are
somewhat difficult to be satisfied. However, considering bilinear
transformation and observing the boundary conditions (26)–(28)
carefully, we may construct an appropriate integral form of map-
ping function as

z = w1(ζ ) = w(ζ ) − i J
, (29a)
J + 1
where

w(ζ ) =
λ∫

0

ib(t)
ζ

ζ t + i
dt + i

ζ − i

ζ + i
, (29b)

J =
λ∫

0

b(t)

t − 1
dt, (29c)

where a real constant λ (0 < λ < 1) and a real function b(t) in
0 � t � λ is to be determined. Since w1(0) = −i (12) is satisfied,
and Im{w1(ζ )} → 0 as ζ → −i on |ζ | = 1, which implies the flat
free surface as |x| → ∞. Then the conjugate function w∗

1(ζ ) can be
written as

w∗
1(ζ ) ≡ w1(1/ζ̄ ) = w∗(ζ ) + i J

( J + 1)
, (30a)

where

w∗(ζ ) = w(1/ζ̄ ) = −
λ∫

0

ib(t)

t − iζ
dt + i

ζ − i

ζ + i
. (30b)

Note that the mapping function w1(ζ ) in (29) is analytic in
|ζ | < 1, whereas the conjugate function w∗

1(ζ ) in (30) is analytic
in |ζ | > 1. By introducing w1(ζ ) of the form in (29), we may show
that the logarithmically singular boundary conditions (26) and (27)
can be satisfied. Substituting (30) into (28), we get F (ζ ) in |ζ | � 1,
by applying Cauchy’s integral theorem [8],

F (ζ ) = −w∗
1(ζ )G(ζ )

= 1

J + 1

{ λ∫
0

ib(t)

t − iζ
dt − i

ζ − i

ζ + i
− i J

}
G(ζ ). (31)

Since the stream function (1) must be discontinuous due to the
source and sink of strength k, F (ζ ) in (31) should have discontinu-
ity 2π ik across the segment D ′ E ′ in Fig. 1(b). Therefore,

G(−it0) = ik( J + 1)

b(t0)
for 0 � t0 � λ. (32)

Substituting ζ = −it0 (0 � t0 � λ) in (24) and using (32), we get

− k( J + 1)

t0b(t0)w ′(−it0)
= k( J + 1)

b(0)w ′(0)

(
t0 − 1

t0

)

+ 1

2π i

∮
|ζ0|=1

γ

4μ|w ′(ζ0)|
ζ0 − it0

ζ0(ζ0 + it0)
dζ0, (33)

where w ′(ζ ) the derivative of w(ζ ) in (29b) is written as

w ′(ζ ) = dw(ζ )

dζ
= −

λ∫
0

b(t)

(ζ t + i)2
dt − 2

(ζ + i)2
. (34)

Now, when we compare the imaginary parts of (22) and (25), we
obtain an expression for the tangential velocity on the free surface:

u0(z) = U (ζ ) = U
(
eiθ )

= − cos θ
∣∣w ′(eiθ )∣∣

×
[

4G(0)

w ′(0)
i + γ

4πμ

2π∫
0

dθ0

|w ′(eiθ0)|(sin θ0 − sin θ)

]
. (35)

From the condition that u0(z) → 0 as |z| → ∞ (i.e. as θ → −π
2 in

(35)), the term in square bracket in (35) must vanish as θ → −π
2 ,

i.e.

G(0) = ik( J + 1)

b(0)
= iγ w ′(0)

16πμ

2π∫
dθ0

|w ′(eiθ0)|(sin θ0 + 1)
. (36)
0
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Fig. 2. Graphs of b(t) (0 � t � λ) in the mapping function w1(ζ ) of (29) for some
capillary numbers Ca.

Combining (33), (36) and canceling b(0), we obtain the relation as

1

b(t0)
= w ′(−it0)(1 − t2

0)(1 − t0)
2

16πCa( J + 1)

×
2π∫
0

dθ0

|w ′(eiθ0)|(sin θ0 + 1)(2t0 sin θ0 + 1 + t2
0)

, (37)

for 0 � t0 < λ, where the capillary number Ca is defined as

Ca ≡ μk

γ d
. (38)

Note that unknown λ and b(t) (0 � t � λ) are involved in J and w ′
of the right-hand side of (37) as shown in (29c) and (34). Eq. (37)
together with (13) is a kind of non-linear integral equation [10]
for real constant λ (0 < λ < 1) and real function b(t) (0 � t � λ)

with 2 given parameters h, Ca. Solving the integral equation (37)
together with (13) numerically, we obtain λ and b(t) (0 � t � λ)

for a given capillary number Ca and h. With λ and b(t) obtained,
we derive G(ζ ) in |ζ | � 1 from (24) and (36) as

G(ζ ) = − k

32πCa
w ′(ζ )

(
ζ + 1

ζ

)
(ζ + i)2 I

(
ζ ;b(t)

)
, (39)

where

I
(
ζ ;b(t)

) ≡
2π∫
0

dθ0

|w ′(eiθ0)|(1 + sin θ0)(sin θ0 − (ζ − ζ−1)/(2i))
. (40)

From (39), we can see

G(ζ ) → iγ /4μ as ζ → −i,

which is consistent with boundary condition (10). Therefore, two
complex functions F (ζ ) and G(ζ ) in the ζ -plane are obtained as
(31) and (39), and hence f (z) and g(z) in the z-plane, which de-
scribe the whole solution of our flow due to the source-sink pair.

3. Results

To find λ and b(t) for the given values of Ca and h, the non-
linear integral equation (37) together with (13) is solved numeri-
cally. For the given value of Ca and initially assumed value of λ,
the integral equation (37) is solved by using the iterative method.
Then, h can be calculated from (13), which must be equal to the
given value of h by adjusting the assumed value of λ. In the iter-
ative method to solve the integral equation (37) for b(t), we used
Fig. 3. Free surface shapes for some values of Ca.

the initial guess as b(t) = 4Ca (0 � t � λ) which is a solution for
Ca → 0. Graphs of b(t) (0 � t � λ) for some values of Ca are shown
in Fig. 2 for h = 0.3 typically. Using λ, b(t) determined in this way,
we can show free surface shapes and streamline patterns for some
values of capillary number Ca and dimensionless distance h.

3.1. Free surface

The free surface Γ is given by (29), i.e., z = x+ iy = w1(ζ ) with
ζ = eiθ ,

x(θ) = cos θ

J + 1

{ λ∫
0

b(t)

t2 + 2t sin θ + 1
dt + 1

1 + sin θ

}
, (41a)

y(θ) = 1

J + 1

{ λ∫
0

b(t)(t + sin θ)

t2 + 2t sin θ + 1
dt − J

}
. (41b)

The free surface shapes are shown in Fig. 3 for some typical values
of capillary number Ca(= μk/γ d) when h = 0.3. As Ca decreases
to −0.63, a cusp is likely to occur at the center (x = 0) of the free
surface. For the lower values of Ca, numerical calculation becomes
hard to obtain a valid solution converged since the integrand in
(37) becomes steep around θ0 = π/2. We may conjecture that as
Ca → −∞, a genuine cusp would occur. In that case, w ′(i) ap-
proaches to zero and the mapping is not conformal at ζ = i so that
the integral equation (37) becomes singular. Near the cusp point,
as explained by Jeong and Moffatt [3] and Jeong [4], the character-
istic length scale reaches to the molecular scale and the continuum
hypothesis fails hence the effects of intermolecular forces should
be considered. Eggers [11] insisted that the air (second fluid out-
side) drawn into the cusp entered the fluid destroying the cusp
solution and the molecular scales were never reached.

From the limit θ → −π
2 in (41), we can see

y → Cx−2 as |x| → ∞, (42)

where

C = 2

( J + 1)3

λ∫
0

b(t)
1 + t

(1 − t)3
dt.

In the limit of Ca(= μk/γ ) → 0, (37) is reduced to b(t) →
4( J + 1)Ca, hence y = O(Ca) from (41b). This means that, for very
large surface tension or very weak strength of source-sink pair, de-
formation of the free surface is very small and free surface shape
tends to be horizontal. Moreover, from (41), we can obtain

y ≈ 2Ca ln

(
x2 + (1 + h)2

x2 + 1

)
, for |Ca| 
 1, (43)

which agrees with a linearized result of our problem.
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Fig. 4. Streamline pattern for Ca = 0.4 with h = 0.3. Here �Ψ/2πk = 0.02.

Fig. 5. Streamline pattern for Ca = 0 with h = 0.3. The results are exactly the poten-
tial flow solution. Here �Ψ/2πk = 0.02.

3.2. Stream function and flow patterns

Substituting F (ζ ), G(ζ ) obtained as (31), (39) into (1), we get a
stream function as

Ψ = 1 − ζ ζ̄

J + 1
Im

[
G(ζ )

{ λ∫
0

b(t)

(t − iζ )(ζ̄ t − i)
dt + 2i

|ζ + i|2
}]

. (44)

When h = 0.3, the streamline patterns for some typical values of
Ca = 0.4,0,−0.3,−0.63 are shown in Figs. 4–7.

Additionally, the tangential velocity u0(z) on the free surface Γ

may also be derived from (35) with (36) as

u0(z) = U
(
eiθ )

= − k

4πCa
(1 + sin θ) cos θ

∣∣w ′(eiθ )∣∣
×

[ 2π∫
0

dθ0

|w ′(eiθ0)|(sin θ0 + 1)(sin θ0 − sin θ)

]
, (45)

where the principal value is used for the integral. Since x is related
to θ by (41a), Eq. (45) determines u0(θ) as a function of x(θ) para-
Fig. 6. Streamline pattern for Ca = −0.3 with h = 0.3. Here �Ψ/2πk = 0.02.

Fig. 7. Streamline pattern for Ca = −0.63 with h = 0.3. Here �Ψ/2πk = 0.02.

metrically. The tangential velocity distribution is shown in Fig. 8
for some values of Ca. The curve corresponding to Ca = 0 coin-
cides with that obtained by a linearized analysis. The free surface
velocity is directed towards or away from the stagnation point on
the free surface according as Ca < 0 or Ca > 0.

For the limiting case of the capillary number Ca → 0,

w ′(ζ ) → −2

(ζ + i)2
, b(t) → 4Ca, G(ζ ) → iγ

4μ
.

Hence the stream function Ψ in (44) becomes

Ψ → −k Im

[
ln

{
ζ + iλ

iζ(λζ̄ − i)

}]
→ k Im

{
ln

(
z2 + 1

z2 + (1 + h)2

)}
,

and the tangential free-surface velocity u0(z) in (45) becomes

u0(z) → k cos θ
2λ(1 + sin θ)

λ2 + 1 + 2λ sin θ
→ 2h(h + 2)kx

(x2 + 1){x2 + (h + 1)2} ,

which agree well with the results of the linearized potential flow
solution.

4. Conclusion

In this paper, Stokes flow due to a source-sink pair of arbitrary
strength below the free surface is analyzed by using the complex
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Fig. 8. Tangential velocity distribution u0(x) on the free surface Γ for some values
of Ca.

function theory. While the gravity is neglected in this model, we
have obtained many valuable insights into the formation of cusp
on the free surface. Actually, near the cusp, surface tension effects
are dominant to the gravitational effects. For arbitrary strength and
distance of source-sink pair, the whole flow fields are determined
including the free surface shape and the tangential velocity dis-
tribution on the free surface. We conclude that the cusp occurs
on the converging free surface for sufficiently large capillary num-
ber Ca. As the capillary number vanishes, our solution tends to the
well-known linearized potential flow solution, as expected. As the
distance of source-sink pair h → 0, the non-linear integral equa-
tion (37) reduces to b(0) = 4Ca. Here, if we maintain kh = constant
(dipole strength), it reduces to a non-linear equation and flow be-
comes that of Jeong and Moffatt. Much further theoretical research
may also be motivated by considering the effects neglected in this
analysis, such as air (second fluid outside) near the cusp, unsteadi-
ness, variable surface tension, the gravity effects, and so on.
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